
Large-Scale, Time-Constrained Symbolic
Regression-Classification

Michael F. Korns

Investment Science Corporation, 1 Plum Hollow, Henderson, Nevada 89052 USA
mkorns@korns.com

Summary. This chapter demonstrates a novel method combining particle swarm,
differential evolution, and genetic programming to build a symbolic regression tool
for large-scale, time-constrained regression-classification problems. In a previous pa-
per we experimented with large scale symbolic regression. Here we describe in detail
the enhancements and techniques employed to support large-scale, time-constrained
regression and classification. In order to achieve the level of performance reported
here, of necessity, we borrowed a number of ideas from disparate schools of genetic
programming and recombined them in ways not normally seen in the published lit-
erature. We discuss in some detail the construction of the fitness function, the use
of abstract grammars to combine genetic programming with differential evolution
and particle swarm agents, and the use of context-aware crossover. 1

Key words: artificial intelligence, genetic programming, particle swarm, dif-
ferential evolution, portfolio selection, data mining, formal grammars, quan-
titative portfolio management

1 This work was completed with the generous help of Conor Ryan who educated
us on Context-Aware Crossover and Timothy May who pioneered the Strategy
Central Project at Investment Science Corp.



2 Michael F. Korns

1 Introduction

This is the story of the problems encountered by Investment Science Cor-
poration in using genetic programming techniques to construct a large-scale,
time-constrained symbolic regression tool which could also perform classifica-
tion.

Without delving in-depth into our financial methods, which is strictly for-
bidden by our corporate policy, we introduce our financial motivations very
briefly and from these motivations quickly construct the requirements of a
generic symbolic regression tool which could be used for classifying common
stocks into long and short candidates for financial applications.

In our previous paper (Korns01), our pursuit of industrial scale perfor-
mance with large-scale, time-constrained symbolic regression problems, re-
quired us to reexamine many commonly held beliefs and, of necessity, to bor-
row a number of ideas from disparate schools of genetic programming and
recombine them in ways not normally seen in the published literature. We
continue this tradition in this current paper. Of special interest is combin-
ing fitness functions to support both symbolic regression and classification
of common stocks into long and short candidates, and combining ideas from
particle swarm and differential evolution to provide more fine grained control
during the Genetic Programming process.

These disparate schools of genetic programming and evolutionary pro-
gramming were combined into the following unusual hybrids:

• Combined: ”Hybrid combination of particle swarm agents and GP”
• Combined: ”Hybrid combination of abstract grammar and tree-based GP”
• Combined: ”Hybrid combination of multiple island populations and boost-

ing with GP”
• Combined: ”Hybrid fitness measure supporting symbolic regression and

classification of long and short candidates”

This narrative describes an applied research project at Investment Sci-
ence Corp. involving man years of engineering effort and hundreds of experi-
ments. Each of the hybrid solutions required to overcome the challenges are de-
scribed in detail. This research project produced a generic symbolic regression-
classification tool capable of processing one million row by twenty column
data mining tables in less than fifty hours on a single workstation computer
(specifically an Intel Core 2 Duo Processor T7200 (2.00GHz/667MHz/4MB),
running our Analytic Information Server software generating Lisp agents that
maximize the on-board Intel registers and on-chip vector processing capabili-
ties).



Large-Scale, Time-Constrained Symbolic Regression-Classification 3

1.1 Financial Motivation

Our experimental market-neutral trading system selects, from a universe of
the 800 most-liquid exchange-traded common stocks, eighty (the worst 10%)
securities to sell short, and another eighty (the best 10%) to buy long. A
successful market-neutral trading system makes a profit greater than that
obtained from a market indexing strategy regardless of market conditions.

Consider a quantitative (quant) trading system for the top 800 exchange-
traded common stocks with the largest dollar-volume traded in the prior week
(YCK04a and CB04a). These securities are so active that we will be able to
move millions of dollars in and out of these investments without appreciably
perturbing their prices. We will retrain the system weekly using a sliding train-
ing window of five years or 1,250 training days of historical data (YCK04a).
This allows relatively frequent system retraining (weekly) while providing a
relatively long retraining period of fifty hours (the weekend).

Our first challenge is selecting a basket of 20 sample column data points
from the over 500 available data points such as Open, High, Low, Close, Vol-
ume, EPS, Analyst Rating, etc. We solve this issue by implementing multiple
independent trading systems. For instance, one might have a value trading
system with one set of 20 training points, a growth trading system with an-
other set of training points, and a chartist trading system with yet another
set of training points. If one has a farm of 100 workstations, each workstation
could retrain each of 100 independent trading systems once per week.

Our second challenge is to perform a symbolic regression every retraining
period on a table of one million rows by twenty columns. If we retrain our
market-neutral trading system weekly, using the previous five years of market
data, a large volume of data must be fed into the system on every retrain-
ing period (1,250 historical daily samples for each of 800 common stocks is
1,000,000 rows of training data by 20 columns). In this paper, we construct
a generic regression-classification tool which can perform a single 1,000,000
row by 20 column symbolic regression in less than 50 hours on a single work-
station computer (so training can complete over the weekend). Clearly such a
tool would prove useful not only in our own financial application but in many
other large-scale, time-constrained applications.

1.2 Experimental Setup

Our experimental universe consists of a set of nine different fictitious markets
driven by different model functions ranging from simple linear to more difficult
multi-modal. Statical best-practice is employed to rigorously separate training
and testing data sets so that all experiments are scored on testing data sets
very different from the data sets they were trained on. We have crafted nine
separate test cases (model formulas), from simple to complex. All of our test



4 Michael F. Korns

cases are trained on one million row by M column randomly generated training
matrices (where M is either 1, 5, or 20). Then a separate randomly generated
one million row by M column testing matrix is used for scoring. All of our
nine test case formulas are shown below (generated with five columns).

Test Case Formulas

linear
y = 1.57 + (1.57*x0) - (39.34*x1) +

(2.13*x2) + (46.59*x3) + (11.54*x4);

hidden
y = 1.57 + (2.13*sin(x2));

cubic
y = 1.57 + (1.57*x0*x0*x0) -

(39.34*x1*x1*x1) + (2.13*x2*x2*x2) +
(46.59*x3*x3*x3) + (11.54*x4*x4*x4);

elipse
y = 0.0 + (1.0*x0*x0) + (2.0*x1*x1) + (3.0*x2*x2) +

(4.0*x3*x3) + (5.0*x4*x4);

hyper
y = 1.57 + (1.57*tanh(x0*x0*x0)) -

(39.34*tanh(x1*x1*x1)) + (2.13*tanh(x2*x2*x2)) +
(46.59*tanh(x3*x3*x3)) + (11.54*tanh(x4*x4*x4));

cyclic
y = 14.65 + (14.65*x0*sin(x0)) -

(6.73*x1*cos(x0)) - (18.35*x2*tan(x0)) -
(40.32*x3*sin(x0)) - (4.43*x4*cos(x0));

cross
y = -9.16 - (9.16*x0*x0*x0) -

(19.56*x0*x1*x1) + (21.87*x0*x1*x2) -
(17.48*x1*x2*x3) + (38.81*x2*x3*x4);

mixed
if ((mod(x0,4) == 0)

{
y = (1.57*log(.000001+abs(x0))) -



Large-Scale, Time-Constrained Symbolic Regression-Classification 5

(39.34*log(.000001+abs(x1))) +
(2.13*log(.000001+abs(x2))) +
(46.59*log(.000001+abs(x3))) +
(11.54*log(.000001+abs(x4)));

}
else
if ((mod(x0,4) == 1)

{
y = (1.57*x0*x0) - (39.34*x1*x1) +

(2.13*x2*x2) + (46.59*x3*x3) +
(11.54*x4*x4);

}
else
if ((mod(x0,4) == 2)

{
y = (1.57*sin(x0)) - (39.34*sin(x1)) +

(2.13*sin(x2)) + (46.59*sin(x3)) +
(11.54*sin(x4));

}
else
if ((mod(x0,4) == 3)

{
y = (1.57*x0) - (39.34*x1) +

(2.13*x2) + (46.59*x3) +
(11.54*x4);

}

ratio
if ((mod(x0,4) == 0)

{
y = ((1.57*x0)/(39.34*x1)) +

((39.34*x1)/(2.13*x2)) +
((2.13*x2)/(46.59*x3)) +
((46.59*x3)/(11.54*x4));

}
else
if ((mod(x0,4) == 1)

{
y = ((1.57*x0)%(39.34*x1)) +

((39.34*x1)%(2.13*x2)) +
((2.13*x2)%(46.59*x3)) +
((46.59*x3)%(11.54*x4));

}
else
if ((mod(x0,4) == 3)



6 Michael F. Korns

y = 0.0 - (39.34* log(.000001+abs(x1))) +
(2.13* log(.000001+abs(x2))) +
(46.59*log(.000001+abs(x3))) +
(11.54* log(.000001+abs(x4)));

}

Our nine test cases vary from simple (linear) to complex (formulas with
embedded if-then-else expressions). Finally, to add difficulty, we sometimes
train and test our nine test cases with random noise added using the following
formula.

;; Modify each y in Y or each ty in TY with random noise.
y = (y * .80) + (y * random(.40));

The addition of random noise makes each test case inexact and theoreti-
cally undiscoverable. Nevertheless, given our application, we need to test our
symbolic regression tool against inexact data.

1.3 Fitness Measure

• Combined: ”Hybrid fitness measure supporting symbolic regression and
classification of long and short candidates”

Standard regression techniques often utilize least squares error as a fitness
measure; however, we would also like to classify securities into long and short
candidates. Specifically we would like to measure how successful we are at
predicting the future top 10% best performers (long candidates) and the future
10% worst performers (short candidates).

Let the dependent variable, Y, be the future profits of a set of securities.
If we were prescient, we could automatically select the best future performers
actualBestLongs, ABL, and worst future performers actualBestShorts, ABS,
by sorting on Y and selecting an equally weighted set of the top and bottom
10%. Since we are not prescient, we can only select the best future estimated
performers estimatedBestLongs, EBL, and estimated worst future performers
estimatedBestShorts, EBS, by sorting on EY and selecting an equally weighted
set of the top and bottom 10%. Clearly the following will always be the case.

• -1 <= ((EBL - EBS) / (ABL - ABS)) <= 1

A situation where ((EBL - EBS) / (ABL - ABS)) > 0 indicates we are
making money speculating on our short and long candidates. Obviously 1 is a
perfect score (we might as well have been prescient) and -1 is a very imperfect
score. Clearly, considering our financial application, we are interested in re-
gression fitness measures which also classify as well as possible. In fact, even
if the regression percent error is poor but the classification is good, we can



Large-Scale, Time-Constrained Symbolic Regression-Classification 7

still have an advantage, in the financial markets, with our symbolic regression
tool.

We combined a normalized average percent error score with a classification
score to produce an optimal fitness measure for our financial application as
follows.

• avgDifY = average of abs(Y[n]-avgY) for all n in N
• avgErrY = average of abs(EY[n]-Y[n]) for all n in N

Our regression error and our classification scores as constructed as follows.

• errPct = avgErrY / avgDifY
• classify = (((EBL - EBS) / (ABL - ABS)) + 1) / 2

Finally, our fitness score is constructed as follows.

• fitness = (errPct + (.001 * classify)))

1.4 Abstract Grammars

• Combined: ”Hybrid combination of abstract grammar and tree-based GP”

Recently, informal and formal grammars have been used in genetic pro-
gramming (ONeil03) to enhance the representation and the efficiency of a
number of applications including symbolic regression. In (Korns01), we dis-
covered that alternative genome representations and evolutionary operators
provided less added value than the use of multiple grammars themselves.

Therefore we settled on a hybrid combination of tree-based GP and formal
grammars where the head of each sublist is a grammar rule agent with poly-
morphic methods for mutation, crossover, etc. Different grammar rules com-
municate with each other by message passing (a staple of object-oriented and
agent-oriented software engineering). We use standard mutation and crossover
operations (Koz92i) and support two regression grammar rules, one for simple
regression and one for multiple regression as follows.

• REG Grammar: regress(EXP);
• MVL Grammar: mvlregress(EXP,EXP,...,EXP);

Our numeric s-expressions, the EXP grammar, are standard JavaScript-
like numeric expressions with the variables x0 through xm (where m is the
number of columns in the regression problem), real constants such as 2.45 or
-34.687, and with the following binary and unary operators + - / % * < <=
== ! = >= > expt max min abs cos cosh cube exp log sin sinh sqroot square
tan tanh. To these we add the ternary conditional expression operator (...)
? ... : ... ;

In this chapter we add an additional abstract numeric expression grammar,
the AXP grammar, which is identical to the EXP grammar except that AXP



8 Michael F. Korns

expressions contain abstract real constants c0 through ck (where k is the
number of unique abstract real constants in the expression), and abstract
variables v0 through vj (where j is the number of unique abstract variables in
the expression).

For instance, the following concrete expression regress(3.4 * sin(x3/x5),
when evaluated, has a fitness score based upon regressing 3.4 times the sine
of column three divided by column five. However, the following abstract ex-
pression regress(c0 * sin(v0/v1), which must be evaluated in a particle swarm
agent, has a fitness score based upon the particle swarm’s choice of actual real
constant for c0 and the choices of actual columns v0 and v1.

It is our intent, by using an abstract expression grammar with imbed-
ded particle swarm evaluation, to experiment with more fine-grained control
during the genetic programming process.

1.5 Overview of Symbolic Regression Tool

In (Korns01) we constructed a large agent complex for high volume sym-
bolic regression applications consisting of one million rows and from five to
twenty columns. Due to the heavy resources required to evaluate a candi-
date well-formed-formula (WFF) across one millions rows, we cannot afford
to evaluate the same candidate twice. Therefore, every WFF which we have
ever evaluated is saved during the course of a single training cycle. All WFF
candidates are saved in a collection sorted by their fitness scores. A user option
setting restricts the survivor WFF population to the ”F” most fit WFF candi-
dates. User option settings support single or multiple island populations and
other potentially usefully clustering of candidate WFFs. Parenthetically, all
the tool’s user option settings are available at run time; therefore, it might be
possible for the tool to evolve itself, although we have not attempted anything
of that nature.

Within the survivor population, mutation and crossover occur in the same
fashion as with standard genetic programming. Each WFF survivor is visited
once per each evolution. A user-option determines the probability of mutation
and another determines the probability of crossover. If warranted, Crossover
occurs between the visited individual and another randomly selected individ-
ual, from the survivor population. The tool supports multiple grammars in
the same training cycle as described previously.

Standard genetic programming practice encourages the use of multiple
independent training runs. Each run incorporates one initialization step and
”G” generational steps during which evolutionary operators are applied. It
is standard practice for the experimenter to perform multiple independent
training runs of G generations each and then report the results of the fittest
individual evolved across all runs (the champion individual).

Since our symbolic regression tool is to be used in a fully automated set-
ting, their can be no human intervention to decide how many independent



Large-Scale, Time-Constrained Symbolic Regression-Classification 9

training runs to perform; therefore, the concept of automatic multiple inde-
pendent training runs has been incorporated into the tool. A user-option de-
termines the number of evolutions ”without fitness improvement” after which
the system starts a new independent training run. After each independent
training run, the best-of-breed champions from the previous run are saved
and the training cycle restarts from scratch. Thus, a training cycle of ”G”
generations may involve more or fewer separate independent training runs
depending on the occurrence of long gaps without fitness improvement.

1.6 Vertical Slicing

In (Korns01) we made use of a new procedure Vertical slicing. First, the
rows in the training matrix X are sorted in ascending order by the dependent
values, Y. Then the rows in X are subdivided into S vertical slices by simply
selecting every Sth row to be in each vertical slice. Thus the first vertical slice
is the set of training rows as follows X[0], X[S], X[2*S], ... . Each vertical
slice makes no assumptions about the underlying probability distribution and
each vertical slice contains evenly distributed training examples, in X, across
the entire range of ascending dependent values, in Y.

Vertical slicing reduces training time by subdividing the training data
into ”vertical slices” each of which is representative of the whole training data
set over ascending values of Y. We then randomly select one of the vertical
training data slices as our ”sample” training slice; furthermore, we modify
each agent WFF and the memo cache to record the sample-fitness. There
are now two different fitness scores for each WFF: sample-fitness and fitness.
During evaluation, each WFF is first scored on the ”sample” training slice and
its sample-fitness is recorded. Next the sample-fitness of the WFF is compared
to the sample-fitness of the least-fit WFF in the survivor population. If the
sample-fitness of the WFF is greater than or equal to the sample-fitness of
the least-fit WFF in the survivor population, the WFF is then scored against
the entire training data and its true fitness is recorded. This approach will
produce false negatives but no false positives.



10 Michael F. Korns

1.7 Adding the AXP Grammar to standard GP

• Combined: ”Hybrid combination of particle swarm agents and GP”

In this section our goal is to describe the use of our abstract expression
grammar, AXP, with standard genetic programming techniques. In a con-
crete grammar expression, such as regress(EXP), obtaining the fitness score
requires little more than evaluating the concrete expression once. Therefore
the regress(EXP) expression can be compiled into a relatively simple agent
which evaluates the expression, EXP, at each point and computes the fitness
score.

In an abstract grammar expression, such as regress(AXP), obtaining the
fitness score requires much more than evaluating the abstract expression once.
Therefore the regress(AXP) expression must be compiled into a complex agent
which evaluates the expression, AXP, multiple times at each point and com-
putes the fitness score for each iterative guess at the proper values of the
abstract real constants c0,...,ck and the proper column choices for each of the
abstract variable references v0,...,vj.

For instance, the following concrete expression regress(3.4*sin(x3/x5),
when evaluated on any point x=(x0,...,xm), has a concrete fitness score. How-
ever, the following abstract expression regress(c0*sin(v0/v1), cannot be eval-
uated on any point x=(x0,...,xm), without choosing concrete values for the
c0, v0, and v1.

A straightforward method for obtaining a fitness score for this abstract ex-
pression, first compiles regress(c0*sin(v0/v1) into an agent, then selects three
substitutions (c0=3.4, v0=x3, v1=x5), (c0=-.89, v0=x10, v1=x2), (c0=302.24,
v0=x0, v1=x9) at random, proceeds to evaluate each of the three substitu-
tions, and finally selects the one substitution with the highest fitness. One
could then cache the original abstract expression, regress(c0*sin(v0/v1), and
its final fitness score, along with a memo denoting the chosen substitution,
(c0=-.89, v0=x10, v1=x2) which allowed the abstract expression to achieve
the fitness score.

The techniques of particle swarm optimization (Eber01) and differential
evolution (Price05) offer an approach to training agents which have been com-
piled from an abstract grammar such as AXP. Both particle swarm and differ-
ential evolution techniques can be applied in both a discrete or a continuous
vector space. We support either technique at the option of the user.

The compiler prepares WFF agents for optimization by recognizing each
abstract constant and each abstract variable reference. Assuming that after
compilation there are K abstract constants and J abstract variable references.
The compiled agent will contain a vector, C, of real values of length K, and a
vector, V, of integer values of length J. The C and V vectors will be used to
memoize the concrete choices for each abstract constant and each abstract
variable reference. The WFF agent’s code is then compiled with indirect
indexed references into the C and V vectors. For instance, the expression,



Large-Scale, Time-Constrained Symbolic Regression-Classification 11

regress(c0*sin(v0/v1), is compiled as, regress(C[0]*sin(x[V[0]]/x[V[1]]). As-
suming that the compiled WFF agent contains vectors C=(3.4,5.6,-2.5) and
V=(3,2,0,1), after particle swarm or differential evolution have made their
choices, then the indirect indexed code, regress(C[0]*sin(x[V[0]]/x[V[1]]), is
equivalent to, regress(3.4*sin(x[3]/x[2]), which is equivalent to, regress(3.4*sin(x3/x2).

Detailed descriptions of the REG, MVL, and EXP grammars plus our pa-
rameters for standard GP and our methods of managing well-formed-formula
(WFF) agent candidates can be found in (Korns01). Clearly when we add ab-
stract WFFs to the system we add a layer of evolved optimization underneath
that of the genetic programming. In our system the handoff is seamless and
occurs when the GP machinery tells the compiled WFF agent to compute its
fitness score.

In adding particle swarm and differential evolution to our system, the basic
algorithmic components are abstract and concrete WFFs, a memo cache of
WFFs, the survivor population of the fittest WFFs, and a list of champion
WFFs. We used the regressGSOSR option settings which are almost directly
in line with (Koz92i) and are as follows. At the initialization step of every
training ”run”, exactly 1000 randomly generated WFFs, in the REG(AXP)
grammar, are evaluated.

Evaluation of each REG(AXP) candidate involves a particle swarm (PS)
or differential evolution (DE) optimization within the candidate agent. After
evaluation, the C and V vectors will be filled with the concrete choices (for
the abstract constants and the abstract variable references) which result in
the best fitness score. The size of the PS and/or DE population pool is 25
and the number of generations to optimize is also 25.

All evaluated WFFs are memoized (saved in a memo cache) and also saved
in sorted order by fitness score (in the survivor population). The top twenty-
five WFFs participate in the genetic operations of mutation and crossover
(Koz92i) during each incremental generation. The probability of mutation is
10%, and the probability of crossover is 100%. When a WFF is chosen for
crossover, its mate is chosen at random from the WFFs of lower fitness within
the top twenty-five fittest individuals (in the survivor population). Crossover
is always performed twice with the same parents and always produces two
children which are evaluated, memoized, and saved in sorted order by fitness
score (in the survivor population). The maximum number of generations be-
fore training halts is provided at the start of training time. If ten generations
pass with no change in the fittest WFF, then system saves the fittest WFF in
its list of champions, clears all WFFs in the survivor population (but not the
memo cache) and evaluates 1000 randomly generated WFFs, starting a new
”run”. Any new ”run” does not reset the generation count. Training always
proceeds until the maximum number of generations have been reached. If G
represents the maximum number of generations allowed for a fully automated
training cycle, then the maximum number of independent ”runs” is (G/10).
Depending upon the progress in training, there may only be a single ”run”
during the entire training process. At the completion of training, the fittest



12 Michael F. Korns

champion WFF (the fittest WFF ever seen) is chosen as the result of the
training process.

1.8 Adding Context-Aware Crossover

In (Maj06) an extension of standard GP crossover is devised. In standard
GP crossover (Koz92i), a randomly chosen snip of genetic material from the
father s-expression is substituted into the mother s-expression in a random
location. In context-aware crossover, a randomly chosen snip of genetic ma-
terial from the father s-expression is substituted into the mother s-expression
at all possible valid locations. Where standard crossover produces one child
per operation, context-aware crossover can produce many children depending
upon the context.

Context-aware crossover holds-forth the promise of greater coverage of
the local search space, as defined by the candidate s-expressions’ roots and
branches, and therefore a greater control of the evolutionary search at a fine
grain level.

We further extended context-aware crossover such that all possible valid
snips of genetic material from the father s-expression are substituted into the
mother s-expression at all possible valid locations. Whereupon all possible valid
snips of genetic material from the mother s-expression are then substituted
into the father s-expression at all possible valid locations.

As an example, this extended context-aware crossover between a father
regress((v0 + c0) / v1) and a mother regress(sin(v2*c1)) produces the follow-
ing children.

• regress(sin(v2*c1) / v1)
• regress((sin(v2*c1) + c0) / v1)
• regress((v0 + sin(v2*c1)) / v1)
• regress((v0 + c0) / sin(v2*c1))
• regress(v2 / v1)
• regress((v2 + c0) / v1)
• regress((v0 + v2) / v1)
• regress((v0 + c0) / v2)
• regress(c1 / v1)
• regress((c1 + c0) / v1)
• regress((v0 + c1) / v1)
• regress((v0 + c0) / c1)
• regress(sin(((v0 + c0) / v1)*c1))
• regress(sin(v2*((v0 + c0) / v1)))
• regress(sin((v0 + c0)*c1))
• regress(sin(v2*(v0 + c0)))
• regress(sin(v0*c1))
• regress(sin(v2*v0))
• regress(sin(c0*c1))



Large-Scale, Time-Constrained Symbolic Regression-Classification 13

• regress(sin(v2*c0))
• regress(sin(v1*c1))
• regress(sin(v2*v1))

We add our extended context-aware crossover to all GP runs in our system
with a varying probability by generation. During the first generation of every
GP run, the probability of extended context-aware crossover is 100%. This
probability declines linearly until the probability of the extended context-
aware crossover is 0% during the final generation.

1.9 Boosting Using Island GP with Multiple Grammars

We introduce genetic diversity via boosting across multiple independent island
populations. There is a correlation between the fittest individuals in a training
run and genetic diversity in the population (Almal06). Furthermore the fittest
individuals, in a training run tend to cluster around a set of common root
expressions (Daida05) and (HS04a). Capitalizing on these observations, we
set our symbolic regression tool to support boosting across multiple islands
with the simple linear regression, REG, grammar.

We use as many independent islands as there are columns in the regression
problem. Each island is evolved for a total of 10 generations using the abstract
grammar REG(AXP). If there are M columns, we repeat the boosting process
M times. When the mth island population has produced its champion WFF
agent, the estimation vector EY is subtracted from the dependent variable Y
to produce Ym the new dependent variable for the m+1 island population to
regress upon.

At the termination of the Mth island symbolic regression, we have M
abstract simple linear WFF champions each of which have regressed on the
boosted dependent variable. We now assume that the following multiple linear
regression will best model that original dependent variable.

• mvlregress(wff0,...,wffM)

Each of the M champions are converted from their abstract AXP grammar
representations into concrete EXP grammar representations, and a single mvl-
regress(wff0,...,wffM) candidate, known as Eve, is entered into the final island
as the first individual. Using extended context-aware crossover on the indi-
vidual WFF s-expressions contained in Eve, we create and additional 1000
individuals. A standard GP run, as in (Korns01), is then run for 10 genera-
tions and the resulting most fit mvlregress(wff0,...,wffM) model is chosen as
our final champion.

1.10 Final Results

Our final experiment was to use the system with multiple island boosting,
using the simple linear REG(AXP) grammar and then populate a final ”island



14 Michael F. Korns

of champions” using the multiple regression MVL(EXP0,...,EXPM) grammar.
2. The results of training on the nine test cases, using the regressGSOBOOST
option settings on 1 million rows and twenty columns with 40% random noise,
are shown in the table below.

Table 1. Result For 1M rows by 20 columns Random Noise

Test Minutes Train-Error Test-Error Classify
cross 2820 0.83 0.67 0.72
cubic 2278 0.39 0.40 0.91
hyper 2154 0.85 0.86 0.47
elipse 3171 0.70 0.55 0.82
hidden 2386 0.11 0.00 0.99
linear 2400 0.10 0.01 0.99
mixed 2845 0.67 1.55 0.64
ratio 2582 0.30 0.94 0.00
cyclic 2336 0.43 0.32 0.05

Description of table headings:

• Test: The name of the test case
• Minutes: The number of minutes required for training
• Train-Error: The average percent error score for the training data
• Test-Error: The average percent error score for the testing data
• Classify: The classification score for the testing data

Fortunately, training time is mostly within our 3000 minute (50 hour) limit
(only the elipse test case is slightly over). In general, average percent error
performance is poor with the linear and hidden problems showing the best
performance. Extreme differences between training error and testing error in
the mixed and ratio problems suggest over-fitting. Surprisingly, long and short
classification is fairly robust in most cases with the exception of the cyclic
and ratio test cases. If we were to run a market neutral hedge on hypothetical
markets, driven by these nine test models, we would have lost money in none
of the markets, broken even in the markets driven by the ratio and cyclic
models, and made good money in all other markets.

We were nearly prescient on the linear, hidden, and cubic market models
realizing over 90% of theoretically possible profits. We achieved more than

2 This entire experimental setup can be chosen by selecting the system’s regressG-
SOBOOST option settings.



Large-Scale, Time-Constrained Symbolic Regression-Classification 15

60% of theoretically possible profits even in the more difficult cross, elipse,
and mixed market models.

1.11 Summary

Genetic Programming, from a corporate perspective, is almost ready for in-
dustrial use on large scale, time constrained symbolic regression problems.
Adapting the latest research results, has created a symbolic regression tool
whose promise is exciting. Financial institutional interest in the field is grow-
ing while pure research continues at an aggressive pace. Further applied re-
search in this field is absolutely warranted.

Clearly we need to experiment with techniques which will improve our per-
formance on the mixed and cyclic test cases. Areas for future research include:
(i) using standard statistical and Bayesian analysis to help build conditional
WFFs for multi-modal markets and (ii) experimentation with additional ex-
perimentation with grammar expressions to increase the speed of evolutionary
training and to develop a better understanding of hill-climbing operators from
a root grammar viewpoint.



16 Michael F. Korns

References

1. Aho86 ”Compiler Principles, Techniques, Tools”, Alfred V Aho, Ravi Sethi,
Jeffery D. Ullman; Addison-Wesley Publishing; 1986.

2. Daida05 ”Considering the Roles of Structure in Problem Solving by a Com-
puter”, in Genetic Programming Theory and Practice II, J Daida; Springer,
New York; 2005.

3. Almal06 ”Content Diversity in Genetic Programming and Its Correlation with
Fittness”, in Genetic Programming Theory and Practice III, A Almal, WP
Worzel, E A Wollesen, C D MacLean; Springer, New York; 2006.

4. YCK04a ”Discovering Financial Technical Trading Rules Using Genetic Pro-
gramming with Lambda Extraction” in Genetic Programming Theory and
Practice II, Tina Yu, Shu-Heng Chen, Tzu-Wen Kuo; Springer, New York;
2005.

5. HS04a ”Does Genetic Programming Inherently Adopt Structured Design Tech-
niques?” in Genetic Programming Theory and Practice III, John Hall, Terence
Soule; Springer, New York; 2006.

6. Chen02 ”Genetic Algorithms and Genetic Programming in Computational Fi-
nance” edited by Shu-Heng Chen; Kluwer Academic Publishers, Dordrecht
Netherlands; 2002.

7. Korns01 ”Large-Scale, Time-Constrained, Symbolic Regression” in Genetic
Programming Theory and Practice IV, Michael Korns; Springer, New York;
2006.

8. Koz92i ”Genetic Programming: On the Programming of Computers by Means
of Natural Selection” John R. Koza; The MIT Press, Cambridge Massachusetts;
1992.

9. Koz94i ”Genetic Programming II: Automatic Discovery of Reusable Programs”
John R Koza; The MIT Press, Cambridge Massachusetts; 1994.

10. Koz99i ”Genetic Programming III: Darwinian Invention and Problem Solving”
John R Koza, Forrest H Bennett III, David Andre, Martin A Keane; Morgan
Kaufmann Publishers, San Francisco, California; 1999.

11. Koz03i ”Genetic Programming IV: Routine Human-Competitive Machine Intel-
ligence” John R Koza, Martin A Keane, Mathew J Streeter, William Mydlowec,
Jessen Yu, Guido Lanza; Kluwer Academic Publishers, Dordrecht Netherlands;
2003.

12. ONeil03 ”Grammatical Evolution: Evolutionary Automatic Programming in an
Arbitrary Language” Michael O’Neill, Conor Ryan; Kluwer Academic Publish-
ers, Dordrecht Netherlands; 2003.

13. CB04a ”Lessons Learned Using Genetic Programming in a Stock Picking Con-
text” in Genetic Programming Theory and Practice II, Michael Caplan, Ying
Becker; Springer, New York; 2005.

14. Eber01 ”Swarm Intelligence” Russell Eberhart, Yuhui Shi, James Kennedy;
Morgan Kaufman, New York; 2001.

15. Price05 ”Differential Evolution: A Practical Approach to Global Optimization”
Kenneth Price, Rainer Storn, Jouni Lampinen; Springer, New York; 2005.

16. Maj06 ”Using context-aware crossover to improve the performance of GP” in
GECCO 2006: Proceedings of the 8th annual conference on Genetic and evo-
lutionary computation,Hammad Majeed and Conor Ryan; ACM Press, New
York; 2006.


